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Question 1

Given , X1, Xo, X3,...X,, are n identically distributed random variables with cdf Fx (z) and pdf fx (z) = Fi (z).

And Y1 = max(Xl, XQ,Xg, Xn)
We know that the cdf of a variable is Fix(z) = P(X < x)
Therefore, cdf of Y7 will be ,Fy, (y) = P(Y1 <vy)

Fy, (y) = P(max(Xy, Xo, X3,..X,) <vy)
If max(Xy, Xo, X3,...X,,) is less than y ,then each of X7, X9, X3,...X,, must be less than y

Fy, (y) = P(X) < y&Xs < y&...&X, <)
Since these are independent random variables

FYl(y) :P(Xl Sy)P(Xg Sy)P(Xn Sy)
Each of these is cdf of X; foriel...n

Fy,(y) = Fx(2)Fx(2) ... Fx(x)
Therefore,

Fy, (y) = Fx(2)"
For finding the pdf ,differentiating is sufficient

fri(y) = nFx ()" fx(x)

And Yl = min(Xl, XQ, Xg, Xn)
We know that the cdf of a variable is Fix(z) = P(X < x)
Therefore, cdf of Y7 will be ,Fy, (y) = P(Y2 <)

FYz(y) = P(min(XlaX27X3a X’n) S y)

Fy,(y) =1— P(min(X1, X2, X3,...X,) > y)
If min(X,, X2, X3,...X,,) is greater than y ,then each of X, Xo, X3,...X,, must be greater than y

Fy,(y) =1 — P(X; > y&X5 > y&...&X, > y)
Since these are independent random variables

Fy,(y) =1-P(X1 2 y)P(X2 > y)... P(X, 2 y)

Fx,(x)=P(X;<z)=1-P(X; > x)
Hence ,



Fy,(y) =1- (1~ Fx(z))(1 - Fx(z))...(1 = Fx(z))
Therefore,

Fy,(y) =1—(1—Fx(2))"
For finding the pdf ,differentiating is sufficient

fa@) = —n(1 — Fx(2))" ' (~fx(z))
Fra(y) = n(l — Fx ()" fx()

Question 2

Given k mlxmg probabilities p;’s where Z pi=landVi, 0<p; <1
Since X ~ Ei:ﬂ)z (pi,o?)

We have ¢x (t) = Zle pi¢x,(t) (using property of mgf)

d
E(X) _ d¢x(t |t— _Zk Di Px, (t)|t 0

=117
But we know that ¢X d9x, () li=0 = pi

So, E(X) =YF, pipi
Var(X) = E(X?) — B(X)?

d?
E(X?) = Tox®) o =3k p L0 =S pi(d + 0?) as E(X2)
Var(X) =0 pi(pd +02) — (X0 pig)?
. 2t2
MGF of X; is exp(p )

2,2

MGF of X is ¢x(t) = S, ps exp(uit + Z5-)

Given Z = Z 10X

Consider Y; = p; X; let G; and g; be its CDF and PDF respectively. then,
Also F;(x) and f;(z) is CDF and PDF of X; respectively.

Gi(y) = PY; <yl = PlpiX; <y| = P|X; < 2| = Fi(%)

—(— )2

cop(—tg—)  eap(=L pind”)
gi(y) = Fi/(%) = ifz(p%) = p“/gm = \/gpigz

So Y; is also gaussian random variable with mean p;u; and variance pfof
Now Z = YF Y,
= 2ui=11i

MGF of sum of random variables is product of respective mgf.

222

62(t) = TI'y év () = [T°, exp(popuat + 22L) = exp(SF (popuat + 2ZL))

$z(t) can also be written as exp(uzt + gzt )

= ui+o}



k k
where puz =Y/ pip; and 03 = Y., p?o?
so by uniqueness of mgf Z is a gaussian random variable with parameters(puz,o%)

Now E(Z) = uz
Var(Z) = o%

_ (m—uz)2)

exp( 207

PDF of Z is fz(x) =

2moy

Question 3

Consider 7 > 0,
By markov’s inequality , we have for any non zero random variable X,
P(X >a) < X
We have X — p > 7 ,where 7 > 0 Now consider for any b > 0,
we have X —pu+b>7+b
Since , both the quantities are positive, the solution set of X — p > 7 must be a subset of
The solution set S of (X — pu+b)*> > (7 4 b)?
Therefore ,we have P(X — pu > 7) < P(X — p+b)* > (7 +b)?)
Applying Markov’s inequality
2
P(X —p>7) < BERED)
E((X = p+b)*) = E(X —1)*) + EQ2(X — w)b) + E(H?)
The term in the middle is anyway zero since E(X — p) =0

E(X — 4 b)?) = 02 + b2

0_2 2
P(X —p>71)< ZH

2 2
Let f(b) = 55

Since this equation is true for all values of b, so differentiating it w.r.t b,

Th—0o?
11(b) = 2

Setting f'(b) = 0 yields b = "72
The equationf(b) yields the value 0;’7_;2 at b= ‘772

PX—pu>71)<

_o®
024712

Consider 7 < 0
We have X — p > 7 ,where 7 < 0 Now consider for any b > 0,
we have - X +pu+b< —74+0
Since , both the quantities are positive, the solution set of —X + p > —7 must be a subset of
The solution set S of (=X + u +b)* < (=7 +b)*
Therefore ,we have P(—X + p < —7) < P((—=X + p+b)*> > (=7 + b)*)
Applying Markov’s inequality
2
P(X 4> —r) < B huto)
E(-X +pu+b)?) = E(-X +p)*) + E(2(—X + n)b) + E(b?)
The term in the middle is anyway zero since E(X — u) =0

E(-X +p+1b)%) =02+ b2



2 2
P(—X+pu >2—T2) < (fTil;))Q
_ oc°+b
Let f(b) = E
Since this equation is true for all values of b, so differentiating it w.r.t b,
/ ) — 2(—7’b—02)
f(b) = e
Setting f'(b) = 0 yields b = <=

-7

The equationf(b) yields the value 02"7; at b= ”—j

2

P(—X+4+pu>-1) < 2

o2+72
PX—-pu>71)=1 (T<X—-p)=1-P(-X+pu>-1)
Therefore,

2

PX-p>7)>1- £

024712

Question 4

We know that etX > ' t >0 <= X > z, since e® is an increasing function
Applying Markov’s inequality

tX)

P(X > 1) = P(e!X >e?) < E(em ,fort >0

e

We also know that ¢x(t) = E(e!X) for t > 0
Therefore

P(X > 1) < etpx (1)
We know that et > e t <0 <= X < z, since e® is an increasing function
Applying Markov’s inequality

P(X <) = P(e!X >et*) < E(::X), fort <0

x

We also know that ¢x(t) = E(e!X) for t <0
Therefore

P(X <2)<e®hx(t)
Applying the above result for the random variable X = > 7 X,
We get

P(X < (1+8)u) < e gy (t)
So the problem essentially boils down to calculating an upper bound for MGF of X

bx(t) = BE(etX) = B(e(X1tXat.+Xn))

ox(t) = [17 B(e™)

Since, the expectation of a bernoulli random variable is 1 + p(e* — 1)

ox(t) = [I7 B(e") =TI (1 + pie’ — 1))
Using the equation 1 4+ x < e”

ox(t) =T (1 +pi(e’ = 1)) < [T} e =D
bx(t) < e pi(e'=1) — gn(e'=1)

P(X < (1+0)p) < e”+Dng(t)



P(X < (1+0)) < 2

e(1+d)u

Question 5

a)
The code for this part is attached with the name g5a.m

The code on execution produces 10 images with names as N.png where n belongs to [5,10,20,100,200,500,1000,5000,10000]

Here are the images attached for N = 100,1000 and 10000, using nsamp = 2000
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Figure 1: Plot for N = 100 Figure 2: Plot for N = 1000
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Figure 3: Plot for N = 10000



b),c)

The code for this part is attached with the name g5bc.m

The code on execution produces 11 images with the first 10 images for part b) and the last image for part c)
Here are the images attached for N = 100,1000 and 10000.
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Figure 4: Plot for N = 100 Figure 5: Plot for N = 1000
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Figure 6: Plot for N = 10000
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Question 6

Correlation Coefficient
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Figure 7: Plot for MAD versus N
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Figure 8: Plot of p versus t; for 12
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Correlation Coefficient versus Shift for 12 = 255-I1
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Figure 9: Plot of p versus t; for 12 =255-11



For 12

The correlation coefficient is minimum at ¢; = —1 and it is decreasing as t; goes from -10 to -1 since the distance
b/w aligned pixels is going to decrease and then starts increasing from 0 to 10 because the distance between
aligned pixels is increasing resulting in positive corelation-coefficient as the two images are closely related to
each other

For 12 = 255 -I1

The magnitude of correlation coefficient is maximum at ¢; = 0 and it is increasing as t; goes from -10 to -1
since the distance b/w aligned pixels is going to decrease and then starts decreasing from 0 to 10 because the
distance between aligned pixels is increasing resulting in negative corelation-coefficient as the two images are
opposites of each other, the negative corelation coefficient means that the images are negatively corelated and
hence -p looks same like that plotted for 12
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Figure 10: Plot of QM1 versus t; for 12 Figure 11: Plot of QM1 versus t; for 12 =255-11
For 12
The Quadratic mutual information that is stored in QMI will be largest at ¢t; = —1, which also agrees with the
fact that the correlation coefficient is minimum at ¢; = —1 and the values of QMI decrease on either side of

t; = —1.This may be the charectersitic of the given images I1,12. And also the QMI gradually falls to zero as
the corelation coefficient increases

For I2 = 255 -1I1

The Quadratic Mutual information stored in QMI will be largest when the two are least co-related since one of
the image is inverse of the other image and this is due to the fact that each element is squared in calculation
of QMI.The QMI hence decreases on either side of t; = 0 since at t; = 0,the images are negatives of each
other,and one can observe that QMI falls to zero as the magnitude of corelation coefficient decreases or rather
the corelation coefficient increases (since,it is negative)

From these graphs one can conclude that QMI is invesely dependent on corelation-coefficient

The code for this part is attached with the name q6.m



Question 7

The moment generating function of Multinomial random variable is given by,

ox(t) = E(etﬁ) = (327 piet)" where p;, n are parameters of multinomial random variable
Now , we have

o nd (3¢ e
50 = B(%) = B(Xie™)

ot;
And for 4, j
i . .
2 (22x0)) = B(2 (X)) = B(XX;¢™X)
But also,

ot o

Ao x (T . An—1 . . \n—1
o) = D () piet)") = n(X) piet)" (D) - (piet)) = npiet (X7 piets)”
For i = §

7] t B n An—1 ] n \n—2 n ) ) n \n—1
2 (2550) = L (npiet () pae™)" ") = n(n = pie (S pie™)" (S 3 (pie™)) + npie® (3] pie)

2 £ . \n—2 . \n—1
(T = n(n = e (S piet)" ™ + npiet (T} pie)”

And for i # j

(22 0)) = 2 (npiets (S piet)" ) = n(n—D)pie (T pie')" (2 2 (pie')) = n(n—1)pipsetrels (S} pret)" >
We know that Variance(X;) = E(X?) — B(X;)?

E(X?) =n(n — 1)p? + np; letting £ = 0

ai; = n(n — 1)p? + np; — n?p?

ai; = np;(1 — p;)

We know that Covariance(X;, X;) = E(X,;X;) — E(X;)E(X;)

E(X;X;) =n(n— 1)p;p; for i # j put t=0

B(X;)E(X;) = (np;)(np;) = n’pip;

aij = aji = n(n — 1)pip; — n’pip; = —npip; for i # j

aij = —np;p; for i # j



