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Question 1

Given , X1, X2, X3, ...Xn are n identically distributed random variables with cdf FX(x) and pdf fX(x) = F ′X(x).

And Y1 = max(X1, X2, X3, ...Xn)
We know that the cdf of a variable is FX(x) = P (X ≤ x)
Therefore, cdf of Y1 will be ,FY1

(y) = P (Y1 ≤ y)

FY1(y) = P (max(X1, X2, X3, ...Xn) ≤ y)
If max(X1, X2, X3, ...Xn) is less than y ,then each of X1, X2, X3, ...Xn must be less than y

FY1(y) = P (X1 ≤ y&X2 ≤ y&....&Xn ≤ y)
Since these are independent random variables

FY1(y) = P (X1 ≤ y)P (X2 ≤ y) . . . P (Xn ≤ y)
Each of these is cdf of Xi for i ε 1 . . . n

FY1(y) = FX(x)FX(x) . . . FX(x)
Therefore,

FY1(y) = FX(x)
n

For finding the pdf ,differentiating is sufficient

fY1(y) = nFX(x)
n−1

fX(x)

And Y1 = min(X1, X2, X3, ...Xn)
We know that the cdf of a variable is FX(x) = P (X ≤ x)
Therefore, cdf of Y1 will be ,FY2

(y) = P (Y2 ≤ y)

FY2
(y) = P (min(X1, X2, X3, ...Xn) ≤ y)

FY2(y) = 1− P (min(X1, X2, X3, ...Xn) ≥ y)
If min(X1, X2, X3, ...Xn) is greater than y ,then each of X1, X2, X3, ...Xn must be greater than y

FY2(y) = 1− P (X1 ≥ y&X2 ≥ y&....&Xn ≥ y)
Since these are independent random variables

FY2(y) = 1− P (X1 ≥ y)P (X2 ≥ y) . . . P (Xn ≥ y)

FXi(x) = P (Xi ≤ x) = 1− P (Xi ≥ x)
Hence ,
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FY2(y) = 1− (1− FX(x))(1− FX(x)) . . . (1− FX(x))
Therefore,

FY2(y) = 1− (1− FX(x))
n

For finding the pdf ,differentiating is sufficient

fY2(y) = −n(1− FX(x))
n−1

(−fX(x))

fY2(y) = n(1− FX(x))
n−1

fX(x)

Question 2

Given k mixing probabilities pi’s where
∑k
i=1 pi = 1 and ∀i, 0 ≤ pi ≤ 1

Since X ∼
∑k
i=1 piN (µi, σ

2
i )

We have φX(t) =
∑k
i=1 piφXi(t) (using property of mgf)

E(X) = dφX(t)
dt |t=0 =

∑k
i=1 pi

dφXi (t)

dt |t=0

But we know that
dφXi (t)

dt |t=0 = µi

So, E(X) =
∑k
i=1 piµi

V ar(X) = E(X2)− E(X)2

E(X2) = d2φX(t)
dt2 |t=0 =

∑k
i=1 pi

d2φXi (t)

dt2 |t=0 =
∑k
i=1 pi(µ

2
i + σ2

i ) as E(X2
i ) = µ2

i + σ2
i

V ar(X) =
∑k
i=1 pi(µ

2
i + σ2

i )− (
∑k
i=1 piµi)

2

MGF of Xi is exp(µit+
σ2
i t

2

2 )

MGF of X is φX(t) =
∑k
i=1 pi exp(µit+

σ2
i t

2

2 )

Given Z =
∑k
i=1 piXi

Consider Yi = piXi let Gi and gi be its CDF and PDF respectively. then,

Also Fi(x) and fi(x) is CDF and PDF of Xi respectively.

Gi(y) = P |Yi ≤ y| = P |piXi ≤ y| = P |Xi ≤ y
pi
| = Fi(

y
pi

)

gi(y) = F ′i (
y
pi

) = 1
pi
fi(

y
pi

) =
exp(

−(
y
pi

−µi)
2

2σ2
i

)

pi
√
2πσi

=
exp(

−(y−piµi)
2

2p2
i
σ2
i

)
√
2πpiσi

So Yi is also gaussian random variable with mean piµi and variance p2iσ
2
i

Now Z =
∑k
i=1 Yi

MGF of sum of random variables is product of respective mgf.

φZ(t) =
∏k
i=1 φYi(t) =

∏k
i=1 exp(piµit+

p2iσ
2
i t

2

2 ) = exp(
∑k
i=1(piµit+

p2iσ
2
i t

2

2 ))

φZ(t) can also be written as exp(µZt+
σ2
Zt

2

2 )
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where µZ =
∑k
i=1 piµi and σ2

Z =
∑k
i=1 p

2
iσ

2
i

so by uniqueness of mgf Z is a gaussian random variable with parameters(µZ , σ
2
Z)

Now E(Z) = µZ
V ar(Z) = σ2

Z

PDF of Z is fZ(x) =
exp(− (x−µZ )2

2σ2
Z

)
√
2πσZ

Question 3

Consider τ > 0,
By markov’s inequality , we have for any non zero random variable X,

P (X ≥ a) ≤ E(X)
a

We have X − µ > τ ,where τ > 0 Now consider for any b > 0,
we have X − µ+ b > τ + b
Since , both the quantities are positive, the solution set of X − µ > τ must be a subset of
The solution set S of (X − µ+ b)

2
> (τ + b)

2

Therefore ,we have P (X − µ > τ) ≤ P ((X − µ+ b)
2
> (τ + b)

2
)

Applying Markov’s inequality

P (X − µ > τ) ≤ E((X−µ+b)2)
(τ+b)2

E((X − µ+ b)
2
) = E((X − µ)

2
) + E(2(X − µ)b) + E(b2)

The term in the middle is anyway zero since E(X − µ) = 0

E((X − µ+ b)
2
) = σ2 + b2

P (X − µ > τ) ≤ σ2+b2

(τ+b)2

Let f(b) = σ2+b2

(τ+b)2

Since this equation is true for all values of b, so differentiating it w.r.t b,

f ′(b) = 2(τb−σ2)

τ+b)3

Setting f ′(b) = 0 yields b = σ2

τ

The equationf(b) yields the value σ2

σ2+τ2 at b = σ2

τ

P (X − µ > τ) ≤ σ2

σ2+τ2

Consider τ < 0
We have X − µ > τ ,where τ < 0 Now consider for any b > 0,
we have −X + µ+ b < −τ + b
Since , both the quantities are positive, the solution set of −X + µ > −τ must be a subset of
The solution set S of (−X + µ+ b)

2
< (−τ + b)

2

Therefore ,we have P (−X + µ < −τ) ≤ P ((−X + µ+ b)
2
> (−τ + b)

2
)

Applying Markov’s inequality

P (−X + µ > −τ) ≤ E((−X+µ+b)2)

(−τ+b)2

E((−X + µ+ b)
2
) = E((−X + µ)

2
) + E(2(−X + µ)b) + E(b2)

The term in the middle is anyway zero since E(X − µ) = 0

E((−X + µ+ b)
2
) = σ2 + b2
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P (−X + µ > −τ) ≤ σ2+b2

(−τ+b)2

Let f(b) = σ2+b2

(−τ+b)2

Since this equation is true for all values of b, so differentiating it w.r.t b,

f ′(b) = 2(−τb−σ2)

−τ+b)3

Setting f ′(b) = 0 yields b = σ2

−τ

The equationf(b) yields the value σ2

σ2+τ2 at b = σ2

−τ

P (−X + µ > −τ) ≤ σ2

σ2+τ2

P (X − µ > τ) = 1− P (τ < X − µ) = 1− P (−X + µ > −τ)
Therefore,

P (X − µ > τ) ≥ 1− σ2

σ2+τ2

Question 4

We know that etX ≥ etx, t > 0 ⇐⇒ X ≥ x, since ex is an increasing function
Applying Markov’s inequality

P (X ≥ x) = P (etX ≥ etx) ≤ E(etX)
etx , for t > 0

We also know that φX(t) = E(etX) for t > 0
Therefore

P (X ≥ x) ≤ e−txφX(t)
We know that etX ≥ etx, t < 0 ⇐⇒ X ≤ x, since ex is an increasing function
Applying Markov’s inequality

P (X ≤ x) = P (etX ≥ etx) ≤ E(etX)
etx , for t < 0

We also know that φX(t) = E(etX) for t < 0
Therefore

P (X ≤ x) ≤ e−txφX(t)
Applying the above result for the random variable X =

∑n
1 Xi,

We get

P (X ≤ (1 + δ)µ) ≤ e−(1+δ)µφX(t)
So the problem essentially boils down to calculating an upper bound for MGF of X

φX(t) = E(etX) = E(et(X1+X2+...+Xn))

φX(t) =
∏n

1 E(etXi)
Since, the expectation of a bernoulli random variable is 1 + p(et − 1)

φX(t) =
∏n

1 E(etXi) =
∏n

1 (1 + pi(e
t − 1))

Using the equation 1 + x < ex

φX(t) =
∏n

1 (1 + pi(e
t − 1)) ≤

∏n
1 e

pi(e
t−1)

φX(t) ≤ e
∑n

1 pi(e
t−1) = eµ(e

t−1)

P (X ≤ (1 + δ)µ) ≤ e−(1+δ)µφX(t)
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P (X ≤ (1 + δ)µ) ≤ eµ(e
t−1)

e(1+δ)µ

Question 5

a)

The code for this part is attached with the name q5a.m

The code on execution produces 10 images with names as N.png where n belongs to [5,10,20,100,200,500,1000,5000,10000]

Here are the images attached for N = 100,1000 and 10000, using nsamp = 2000

Figure 1: Plot for N = 100 Figure 2: Plot for N = 1000

Figure 3: Plot for N = 10000
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b),c)

The code for this part is attached with the name q5bc.m

The code on execution produces 11 images with the first 10 images for part b) and the last image for part c)
Here are the images attached for N = 100,1000 and 10000.

Figure 4: Plot for N = 100 Figure 5: Plot for N = 1000

Figure 6: Plot for N = 10000
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Figure 7: Plot for MAD versus N

Question 6

Correlation Coefficient

Figure 8: Plot of ρ versus ti for I2 Figure 9: Plot of ρ versus ti for I2 =255-I1
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For I2
The correlation coefficient is minimum at ti = −1 and it is decreasing as ti goes from -10 to -1 since the distance
b/w aligned pixels is going to decrease and then starts increasing from 0 to 10 because the distance between
aligned pixels is increasing resulting in positive corelation-coefficient as the two images are closely related to
each other

For I2 = 255 -I1
The magnitude of correlation coefficient is maximum at ti = 0 and it is increasing as ti goes from -10 to -1
since the distance b/w aligned pixels is going to decrease and then starts decreasing from 0 to 10 because the
distance between aligned pixels is increasing resulting in negative corelation-coefficient as the two images are
opposites of each other, the negative corelation coefficient means that the images are negatively corelated and
hence -ρ looks same like that plotted for I2

Figure 10: Plot of QMI versus ti for I2 Figure 11: Plot of QMI versus ti for I2 =255-I1

For I2
The Quadratic mutual information that is stored in QMI will be largest at ti = −1, which also agrees with the
fact that the correlation coefficient is minimum at ti = −1 and the values of QMI decrease on either side of
ti = −1.This may be the charectersitic of the given images I1,I2. And also the QMI gradually falls to zero as
the corelation coefficient increases

For I2 = 255 -I1
The Quadratic Mutual information stored in QMI will be largest when the two are least co-related since one of
the image is inverse of the other image and this is due to the fact that each element is squared in calculation
of QMI.The QMI hence decreases on either side of ti = 0 since at ti = 0,the images are negatives of each
other,and one can observe that QMI falls to zero as the magnitude of corelation coefficient decreases or rather
the corelation coefficient increases (since,it is negative)

From these graphs one can conclude that QMI is invesely dependent on corelation-coefficient

The code for this part is attached with the name q6.m

8



Question 7

The moment generating function of Multinomial random variable is given by,

φX(~t ) = E(e~t
~X) = (

∑n
1 pie

ti)
n

where pi, n are parameters of multinomial random variable
Now , we have

∂φX(~t )
∂ti

= E(∂e
~t ~X

∂ti
) = E(Xie

~t ~X)

And for i, j

∂
∂tj

(∂φX(~t )
∂ti

) = E( ∂
∂tj

(Xie
~t ~X)) = E(XiXje

~t ~X)

But also,

∂φX(~t )
∂ti

= ∂
∂ti

((
∑n

1 pie
ti)
n
) = n(

∑n
1 pie

ti)
n−1

(
∑n

1
∂
∂ti

(pie
ti)) = npie

ti(
∑n

1 pie
ti)
n−1

For i = j

∂
∂ti

(∂φX(~t )
∂ti

) = ∂
∂ti

(npie
ti(

∑n
1 pie

ti)
n−1

) = n(n− 1)pie
ti(

∑n
1 pie

ti)
n−2

(
∑n

1
∂
∂tj

(pie
ti)) + npie

ti(
∑n

1 pie
ti)
n−1

(∂
2φX(~t )
∂t2i

) = n(n− 1)p2i e
2ti(

∑n
1 pie

ti)
n−2

+ npie
ti(

∑n
1 pie

ti)
n−1

And for i 6= j

∂
∂tj

(∂φX(~t )
∂ti

) = ∂
∂tj

(npie
ti(

∑n
1 pie

ti)
n−1

) = n(n−1)pie
ti(

∑n
1 pie

ti)
n−2

(
∑n

1
∂
∂tj

(pie
ti)) = n(n−1)pipje

tietj (
∑n

1 pie
ti)
n−2

We know that Variance(Xi) = E(X2
i )− E(Xi)

2

E(X2
i ) = n(n− 1)p2i + npi letting ~t = ~0

aii = n(n− 1)p2i + npi − n2p2i

aii = npi(1− pi)

We know that Covariance(Xi, Xj) = E(XiXj)− E(Xi)E(Xj)

E(XiXj) = n(n− 1)pipj for i 6= j put ~t = ~0

E(Xi)E(Xj) = (npi)(npj) = n2pipj

aij = aji = n(n− 1)pipj − n2pipj = −npipj for i 6= j

aij = −npipj for i 6= j
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